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ABSTRACT 

It is shown that a matrix satisfying a certain spectral condition which has an 
infinite sequence of accretive powers is unitarily similar to the direct sum of a 
normal matrix and a nilpotent matrix. If the sequence of exponents is forcing or 
semiforcing then the spectral condition is automatically satisfied. If, further, the 
index of 0 as an eigenvalue of A is at most l or the first term of the sequence of 
exponents is l, then the matrix is positive semidefinite or positive definite. 
There are applications to matrices with a sequence of powers that are 
M-matrices. 

§1. Introduction 

Let  A be  a (complex  n x n )  matr ix .  The  mat r ix  A is ca l led  accretive if 

R e ( A )  = (A + A * ) / 2  is a pos i t ive  semidef in i t e  (He rmi t i an )  mat r ix  ( R e ( A ) - 0 )  

and  A is ca l led  strictly accretive if R e ( A )  is a posi t ive  def in i te  mat r ix  ( R e ( A ) >  

0). In 1975, C. R. Johnson  [6] showed  that  if A ,  A 2 , A  3 . . . .  are  s t r ic t ly  accre t ive  

then A is posi t ive  def ini te .  A p r o o f  valid for  b o u n d e d  l inear  o p e r a t o r s  on a 

complex  H i l b e r t  space  was given by  D e P r i m a  and R icha rd  in [2]. In fact  they  

showed  tha t  if A ,  A 2, A 3 . . . .  a re  accre t ive  then  A is pos i t ive  semidef in i te .  In 1976 

Shiu [9] i m p r o v e d  the resul t  of [2]. Bas ing  his resul ts  on some  t h e o r e m s  in 

N a g y - F o i a s  [10, C h a p t e r  4, Sec t ion  4], he p r o v e d  the fo l lowing  t h e o r e m :  

Le t  r~ = 2 k-l, k = 1,2 . . . . .  I f  

(1.1) A "~ is accretive for  k = 1,2 . . . .  

then A >-_ O. 
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In this paper we generalize the above results in the finite dimensional case. We 

employ the concept of a (semi)[orcing sequence of positive integers (rl, r2 . . . .  ) 

defined in our paper [5]. We show that if (1.1) holds for a semiforcing sequence 

and either the index of 0 as an eigenvalue of A is at most 1 or rt = 1, then it 

follows that A => 0. Further, if either the sequence is semiforcing, (1.1) holds and 

A p is strictly accretive for some postive p, or the sequence is semiforcing and 

(1.2) A ,k is strictly accretive for k = 1,2 . . . .  

then A > 0. 

We use the above theorems to improve a recent result in [3]. There it is shown 

that a matrix all of whose positive powers are irreducible M-matrices is 

positively diagonally similar to a symmetric matrix. Here we derive the same 

conclusion from a weaker hypothesis, and then apply this result to show that all 

powers of the given matrix are irreducible M-matrices. 

We now describe our results in more detail. In Section 2, which is purely 

number theoretical, we define the concept of a forcing [semiforcing] sequence 

(for a set of complex numbers), namely an increasing sequence of positive 

integers with the property that a complex number c (in the set) is forced to be 

nonnegative if for every p in the sequence c I' has nonnegative [positive] real 

part, see Definition 2.1. We recall sufficient conditions for a sequence to be 

(semi)forcing proved in [5] (Theorems 2.5 and 2.8). Some examples of 

(semi)forcing sequences are given. 

In Section 3 we prove our main results on matrices with accretive powers. Our 

first (and key) theorem (Theorem 3.1) asserts that a matrix which satisfies a 

certain spectral condition and which has an infinite sequence of accretive powers 

is unitarily similar to a direct sum of a normal matrix and a nilpotent matrix. We 

essentially derive this result from a computation with 2 × 2 matrices. Our key 

theorem has many corollaries which follow quite easily. By use of the standard 

inequality that the minimal eigenvalue of the real part of a given matrix is less 

than or equal to the real part of every eigenvalue of the matrix, we obtain 

applications to the case when the sequence of exponents is forcing or semiforc- 

ing. In particular, if a matrix has an infinite sequence of accretive powers where 

the exponents form a forcing sequence then A is unitarily similar to the direct 

sum of a positive definite matrix and a nilpotent matrix (Theorem 3.12). Under  

some additional hypotheses we may conclude that the matrix is positive 

semidefinite (Corollary 3.9) or positive definite (Corollary 3.10). Further,  if a 

matrix has an infinite sequence of strictly accretive powers where the exponents 
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form a semiforcing sequence then A is positive definite (Theorem 3.19). These 

results contain the theorems of [2], [6] and [9] quoted above as special cases. 

In Section 4 we consider (complex) matrices A such that A '~ is an M-matrix, 

k = 1,2 . . . . .  where (rl, r2 . . . .  ) is an infinite semiforcing sequence and A p is an 

irreducible Z-matrix for some positive integer p (see Hypothesis 4.2). By means 

of one of the corollaries in Section 3 we show that such a matrix is positively 

diagonally similar to a positive definite matrix (Theorem 4.9). In Section 5 we 

show more: A matrix satisfying the above conditions is indeed an M M A - m a t r i x ,  
viz. a matrix all of whose positive powers are irreducible M-matrices (Theorem 

5.12). Thus we obtain an alternative proof and a generalization of Theorem 9.6 

of [3], see Corollary 5.17. 

We now make some observations concerning the relation of our paper and [3]. 

The results of that paper are not used in Sections 2, 3 and 4 of the current paper. 

However, Section 5 rests on the techniques and results developed in Sections 4 

and 5 of [3], but the results of the other sections of [3] are not assumed here. In 

[3], Sections 4 and 5 contain preliminary results necessary for the development 

of a theory of M M A - m a t r i c e s  and related classes of matrices to be found in 

Section 6 of that paper. Thus, in the case of M M A - m a t r i c e s ,  one could use our 

symmetrization results in the current paper (e.g. Corollary 5.17) to obtain an 

alternative development of the theory found in Section 6 of [3]. Since, in this 

approach, only symmetric matrices need be considered, this development would 

be somewhat simpler and perhaps aesthetically more appealing than the proofs 

in [3]. In particular, one may replace the proof of the crucial inequality in 

Lemma 6.8 of [3] by a standard inequality for Hermitian matrices, see our proof 

of Lemma 5.7. 

Throughout this paper the term "positive (semi)definite matrix" will mean 

"positive (semi)definite Hermitian matrix". 

Our definitions are numbered 2.1, 2.4, 4.1, 4.8, 5.I1. See also the beginnings of 

various sections for notations and informal definitions. 

§2. Forcing sequences 

We shall use the notation (r~, r2 . . . .  ) for an infinite sequence of integers and the 

notation (rt . . . .  ,r,) for a sequence of integers which is finite if t is a positive 

integer and infinite if t = oo. Further, "sequence of positive integers" will always 

mean "strictly increasing sequence of positive integers". 

DEFINITION 2.1. Let T be a subset of the set C of all complex numbers, and 

let R = (r~,r2,..., r,) be a (finite or infinite) sequence of positive integers. 
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(i) The sequence R is called a T-forcing sequence if for any number  c E T, 

(2.2) Re(c'~)-> 0, k = 1,2, . . . , t ,  

implies that c => 0. 

(ii) The sequence R is called a T-semiforcing sequence if for any (nonzero) 

number  c E T, 

(2.3) Re(c'~) > 0, k = 1,2 . . . . .  t, 

implies that  c > 0. 

(iii) If T = C then a T-forcing [T-semiforcing] sequence will simply be called 

a forcing [semiforcing] sequence.  

NOTATION 2.4. (i) We denote  by R~ the set of all nonnegat ive numbers.  

(ii) Let  T C_ C, TIZ R]. We denote  

v ( T )  = inf{larg(c)[ : c @ T\R°}, 

where arg(c) is chosen in the half open interval ( -  lr, ar]. 

The following sufficient conditions that a sequence is (semi)forcing are special 

cases of Theorems 3.4, 3.10, 3.11 and 3.14 in [5]. 

THEOREM 2.5. Let  R = (r~, r~ . . . .  ) be a sequence of  positive integers with r~ = 1. 

(i) A s s u m e  that for every m, m = 3,4 . . . . .  either 

(2.6) 

o r  

r,,-i ~ 3rm-2, 

4 k + l  
(2.7) 3 r,,_~ ~ r,, _-< (4k + 3)r,,-2 

for some positive integer k (which depends on m).  Then R is a semiforcing 

sequence. 

(ii) Furthermore, let T C_ C, T ~  R'+ ~, be such that v(T)  > 0, and suppose that t is 

the (smallest)  positive integer such that r,v(T)>=Tr/2. Then the sequence 

(r,, r2 . . . . .  r,÷,) is T-semiforcing. 

(iii) Furthermore, if (2.6) is satisfied for m = 3,4 . . . . .  t + 1 then the sequence 

(r,,r2 . . . . .  r,) is T-semiforcing. 

THEOREM 2.8. Let  R = (r~,r2 . . . .  ) be a sequence of  positive integers with r, = 1. 

(i) A s s u m e  that for every m, m = 3,4 . . . . .  either 

(2.9) rm ~ < 3r~-z, 
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Or 

4 k + l  
(2.10) ~ r m - ~  < rm < (4k + 3)rm-2 

for some positive integer k (which depends on m ). Then R is a forcing sequence. 
(ii) Furthermore, let T C_ C, T~Z R+ ~, be such that v ( T )  > 0, and suppose that t is 

the (smallest) positive integer such that r,l,(T)> 7r/2. Then the sequence 

(r~, r2 . . . . .  r,.~) is T-forcing. 
(iii) Furthermore, if (2.9) is satisfied for m = 3,4 . . . . .  t +  1 then the sequence 

(r~,r2 . . . . .  r,) is T-forcing. 

We remark  that in T h e o r e m s  2.5 and 2.8 the value of k in (2.7) and (2.10) can 

only be 1 or  2, except  in the case of m = t + 1 in Part  (ii) of these theorems.  For  a 

detai led discussion see Observa t ion  (3.19) in [5]. 

EXAMPLE 2.11. The  sequence  (1,3,4,8 . . . .  ) where  rk = 2  ~-~, k = 3 , 4  . . . . .  is 

semiforcing by T h e o r e m  2.5, but  is not forcing since Re( i  rk ) => 0 for k = 1,2 . . . . .  

EXAMPLE 2.12. The  sequence  (1,3,10,31,94 . . . .  ) where  rk = 3 r ~ _ , + l ,  k = 

3,4 . . . . .  is forcing (see Corol lary  3.16 in [5]). 

EXAMPLE 2.13. The  sequence  (1 ,p ,p  2 . . . .  ) where  p is a positive integer,  

p > 1, is forcing if and only if p = 2 and is semiforcing if and only if p = 2 or  

p = 3 (see Corol lary  3.15 in [5]). 

EXAMPLE 2.14. The  sequence  (p,p + 1,p + 2 . . . .  ) where  p is a positive integer  

is forcing (see Corol lary  3.28 in [5]). 

EXAMPLE 2.15. The  sequence  (2,3,5,8,13 . . . .  ) where  rk =rk  2q-rk-,, k =  

3,4 . . . . .  is not semiforcing (see the end of Section 3 in [5]). 

§3. Sequences of accretive powers 

If n is a positive integer,  we put  ( n ) = { 1  . . . . .  n}. 

Let  A ~ C and let A @ C "". The  index of A as an eigenvalue of A is defined to 

be the order  of the largest block in the Jordan  canonical  form of A associated 

with A. In part icular  the index of A as an eigenvalue of A is 0 if and only if A is 

not an eigenvalue of A. Now let A be niipotent .  Then  the index (of ni lpotency)  

of A is defined to be the index of 0 as an eigenvalue of A. It is equal  to the 

smallest positive integer  p such that  A p = 0. 

Let  A ~ C " "  and let i, j E ( n ) .  We deno te  by A[i , j]  the 2 x 2  principal 

submatr ix  of A based on the indices i and j. 
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We begin with our key theorem. 

THEOREM 3.1. Let A EC"" and let spec(A) be the multiset {A~ . . . . .  A,}. 

Suppose that 

(3.2) JA, J=)A,I implies that A,=Aj, i, j E ( n ) .  

Let (rh r,_ . . . .  ) be a (strictly increasing) infinite sequence of positive integers. I f  

(3.3) A "k is accretive, k = 1,2 . . . . .  

then A is unitarily similar to the direct sum H G N, where H is a nonsingular 

normal matrix and N is a nilpotent matrix of index less than or equal to ft. 

PROOF. Without loss of generality we suppose that 

By examination of the proof of a standard theorem due to Schur [7, p. 67], the 

matrix A is unitarily similar to an upper triangular matrix B with b, = A,, 

i =  i . . . . .  n. Furthermore.  Re(B p) is unitarily similar to Re(A p) for every 

positive integer p. Partition B as 

0 " 

where H is an h x h block. We shall show that C = 0 ,  that H is a diagonal 

matrix and that N is a nilpotent matrix with index less than or equal to r~. This 

will prove the result. 

We first show that H is a diagonal matrix and that C = 0. Suppose otherwise. 

Then there exist i E (h) and j E (n) with i < j such that b = b~# 0. We choose i,j 

satisfying the above conditions such that j -  i is minimal. Then 

(3.47 b~k = 0, i < k < j. 

It follows from the triangularity of B and from (3.47 that for each positive integer 

p we have 

and 

(BP). = a~, 

(BP)jj = Af, 

p- I  

(B~)° = q~=o a~-q-tb)t~" 
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Let Cp = BP[i,]] = B[i,j]". In view of (3.2), we need consider only the following 

two cases. 

Case 1. A, = A t = A. In this case 

C~= 0 

Thus 

pbA ~-l 
AP ]" 

Let or = A/ a . Then 

Re(A") pba P-'/2 ' 
Re(Cp) = / 

" I- p--~ 7=~2 Re(a")  

[ Re(~r p) pbor"/2Z] . 
p b ~  Re(or p ) 

Re(Co)= a p 

Since I orl = 1 it now follows that for all p sufficiently large the above matrix 

has a negative determinant. Since the sequence r,, r2 . . . .  tends to infinity, we have 

a contradiction to (3.3). 

Case 2. I£ I > I A, I. In this case 

0 p '~p-I lp-q- l l .~ lq" l  ~.dq = 0  ~.  i u / l ,  j 

c~= ,f J 

=[o  ~ ~,~(1- v")], X"v" j 

where a = a,, v = a f l£  and c = b/X(1-  v). For or = A/IA 1 we obtain 

Re(A") cA"(l - v")/2 
Re(C")=[cAP(1-vP)/2 Re(A% p) ] 

= IA P[ Re(orP) corP(1 - v")/2 

tcorp-O---~)/2 Re(o-% p) ]" 

Since ] or l = 1 and I v l < 1 it now follows that for all p sufficiently large the 

above matrix has a negative determinant. As in Case 1 this contradicts (3.3). 

Hence, the matrix H is diagonal and C = 0. 

We now show that N is nilpotent of index less than or equal to rl. Since N is 

strictly upper triangular it is clear that N is nilpotent. Suppose that N" ~ 0. Then 
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b = (N")ii~ 0 for some i,j E ( n ) ,  i <j .  Hence 

Re(N"[ i , j ] )= b)2 0 ' 

which is not positive semidefinite, contrary to (3.3). Hence the index of N is less 

than or equal to r~. []  

The hypothesis that (rj, r2 . . . .  ) is infinite cannot be omitted from Theorem 3.1 

as demonstrated by the matrix in Example 3.15 below. 

We have a number of corollaries which are immediate. 

COROLLARY 3.5. Let A E C"" and suppose that the index of 0 as an eigen- 

value of A is at most 1. I f  A satisfies the hypotheses of Theorem 3.1 then A is 

normal. 

PROOF. Since the matrix H G N in the conclusion of Theorem 3.1 has the 

same Jordan canonical form as A, the nilpotent matrix N is either absent or is of 

index 1 and hence N = 0. It follows that A is unitarily similar to a normal matrix 

and thus A is normal. [] 

COROLLARY 3.6. Let (r~, r2 . . . .  ) be an infinite sequence with r~ = 1. I f  A E C"" 

satisfies the hypotheses of Theorem 3.1 then A is normal. 

PROOF. In this case, the nilpotent matrix N in the conclusion of Theorem 3.1 

is either absent or is a zero matrix and the result follows. [] 

Condition (3.2) cannot be omitted from the hypotheses of Theorem 3.1 or 

Corollaries 3.5 and 3.6 as is shown by the following example. 

EXAMPLE 3.7. Let 

[ '  ' ] 
A = 0 e ' /~ " 

Then R e ( A ) > 0  and A 6k = / ,  k = 1,2 . . . .  and hence (3.3) holds for r, = 1, 

rk = 6(k - 1), k = 2 ,3 , . . . .  But A is not normal, and hence, being nonsingular, A 

cannot be unitarily similar to the direct sum of a normal and a nilpotent matrix. 

COROLLARY 3.8. Let A EC"" and let (r~,r2 . . . .  ) be an infinite sequence of 

positive integers such that (3.3) holds. I f  the eigenvalues o[ A are nonnegative then 

the matrix A is unitarily similar to the direct sum of a positive definite matrix and a 

nilpotent matrix of index less than or equal to rl. 

PROOF. Since the eigenvalues of A are nonnegative, condition (3.2) is 
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satisfied. Hence,  since a nonsingular normal matrix with nonnegative eigen- 

values is positive definite the result follows from Theorem 3.1. [] 

COROLLARY 3.9. Let A E C "n and let (rt, r2 . . . .  ) be an infinite sequence of 

positive integers such that (3.3) holds. I f  the eigenvalues of A are nonnegative and 

the index of 0 as an eigenvalue of A is at most 1, then A is positive semidefinite. 

COROLLARY 3.10. Let A E C"" and let (rl,r2 . . . .  ) be an infinite sequence of 

positive integers such that (3.3) holds. If the eigenvalues of A are positive then A is 

positive definite. 

It is now easy to prove further results under the assumption that the sequence 

(r,, r2 . . . .  ) is forcing or semiforcing. 

The following lemma is very well known, e.g. 5.2.7 in [7, p. 169]. 

LEMMA 3.11. L e t A  EC""and le tA  Espec (A) .  Then Re(A)isgreater thanor 

equal to the minimal eigenvalue of Re(A).  

THEOREM 3.12, Let A EC"" and let T be a subset of C which contains 

spec(A). Suppose that (r~, r,_ . . . .  ) is an increasing infinite T-forcing sequence. If 

(3.3) holds then the matrix A is unitarily similar to the direct sum of a positve 

definite matrix and a nilpotent matrix of index less than or equal to r~. 

PROOF. Let A ~ spec(A). By Lemma 3.11 we see that (3.3) implies that 

(3.13) Re(Ark)-> 0, k = 1,2 . . . . .  

Since (rj, r2 . . . .  ) is a T-forcing sequence, it follows that )t -> 0. Thus the result 

follows immediately from Corollary 3.8. [] 

Theorem 3.12 has corollaries analogous to Corollaries 3.5 and 3.6. We state 

the second of these explicitly as Corollary 3.14. This corollary generalizes the 

results of [2] and [9] in the finite dimensional case since rk = r and r~ = 2 k-t 

k = 1,2 . . . . .  are forcing sequences. 

COROLLARY 3.14. Let A E C  "n and let T be a subset of C which contains 

spec(A ). Suppose that (rt, r2 . . . .  ) is an infinite T-forcing sequence with r~ = 1. If 

(3.3) holds then the matrix A is positive semidefinite. 

Theorem 3.12 and Corollary 3.14 do not hold in general for finite T-forcing 

sequences as demonstrated by the following example. 

EXAMPLE 3.15. Let 

1 ,] 
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Let T = {1}. Clearly every sequence is T-forcing. In particular we may choose 

the sequence (1). Observe that A is accretive, so (3.3) is satisfied. However the 

conclusion sol Theorem 3.12 or Corollary 3.14 do not hold. 

We also remark that the condition that the sequence (r~,r2 . . . .  ) is T-forcing 

cannot be omitted from Theorem 3.12 and Corollary 3.14. In fact, for every 

sequence (r,r_~ . . . .  ) which is not T-forcing one can find a matrix A whose 

spectrum is contained in T such that A satisfies (3.3) but not the conclusion of 

Theorem 3.12. For proof note that by Definition 2.1 there exists a complex 

number A E T which is not nonnegative and which satisfies 

Re(AI~)=> 0, k = 1,2 . . . . .  

The matrix AI E C"" furnishes an example. 

We now impose conditions which permit us to conclude that A is positive 

definite. 

COROLLARY 3.16. Let A E C"" be a nonsingular matrix and let T be a subset of 

C that contains spec(A ). Suppose that (r ,  r,_ . . . .  ) is an infinite T-forcing sequence. 

If (3.3) holds then the matrix A is positive definite. 

COROLLARY 3.17. Let A EC"" and let T be a subset of C that contains 

spec(A). Suppose that (rt, r2 . . . .  ) is an infinite T-forcing sequence. I f  (3.3) holds 

and there exists a positive integer p such that A p is strictly accretive then A is 

positive definite. 

PROOf. Let A ~spec(A) .  If A p is strictly accretive then it follows from 

Lemma 3.11 that Re(A P) > 0 and hence A is nonsingular. The result now follows 

from Corollary 3.16. [] 

Since (1,2,3 . . . .  ) is a forcing sequence, Corollary 3.17 generalizes Johnson's 

result in [6]. 

Theorem 3.12 and Corollaries 3.16 and 3.17 do not hold if "forcing" is 

replaced by "semiforcing". Consider the following example. 

EXAMPLE 3.18. Let rk = 3 k-~, k = 1,2 . . . . .  This sequence is semiforcing by 

Lemma 2.12. Consider the l × l matrix 

A = [e ~"~l- 

Then Re(A")  > 0, and Re(A '~ ) => 0, k = 2,3 . . . . .  Thus A satisfies the hypotheses 

of Theorem 3.12 and its corollaries (with T = C) but the conclusions of these 

results are obviously false for A. 
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However  we have the following result for semiforcing sequences. 

THEOREM 3.19. Let A ~ C"" and let T be a subset of C that contains spec(A). 

Suppose that (rl, r2 . . . .  ) is an infinite T-semiforcing sequence. Suppose that 

(3.20) A ,k is strictly accretive, k = 1,2 . . . . .  

Then A is positive definite. 

PROOF. Let A E spec(A). Then it follows from Lemma 3.11 and (3.20) that 

(3.21) Re(Ark)>0,  k = 1,2 . . . . .  

Since (rl, r2 . . . .  ) is a semiforcing sequence, it follows from (3.21) that A > 0. The 

result now follows from Corollary 3.10. []  

Theorem 3.19 does not hold in general for finite T-semiforcing sequences as 

demonstrated by Example 3.15. 

Note that the condition that the sequence (rl, r2 . . . .  ) is T-semiforcing cannot be 

omitted from Theorem 3.19; see a similar remark about Theorem 3.12 after 

Example 3.15. 

For specific semiforcing sequences stronger results may hold. Let (r,, r2 . . . .  ) be 

the semifrocing sequence (1,3,4,8,16 . . . .  ) considered in Section 2. If c is a 

complex number such that Re(c 'k)-> 0 for k = 1,2 . . . .  then either c is nonnega- 

tive or c is pure imaginary. Hence for this sequence (3.3) implies that A is 

unitarily similar to the direct sum of a positive definite matrix, a skew-Hermitian 

matrix and a nilpotent matrix of index less than or equal to r~. Further,  if (3.3) 

holds and either A or A 3 is strictly accretive then A is positive definite. For 

proof observe that in this case it follows from Lemma 3.11 that A cannot have 

pure imaginary eigenvalues. 

Since one can easily find a normal matrix A satisfying (3.2) which is not 

accretive, it follows that the natural converses of Theorem 3.1 and Corollaries 

3.5 and 3.6 do not hold. On the other hand, converses of all subsequent theorems 

and corollaries in this section are true and trivial. 

Let A E R"" and suppose that A has real eigenvalues. Then A is orthogonally 

similar to a real upper triangular matrix. Hence,  repeating the proof of Theorem 

3.1 in this case, we see that for such matrices we may replace "unitarily similar" 

by "orthogonally similar", "normal matrix" by "real symmetric matrix", "posi- 

tive (semi)definite matrix" by "positive (semi)definite real matrix" in Theorem 

3.1 and Corollaries 3.5 and 3.6. Consequently, the same replacements may be 

made in Theorems 3.11 and 3.17 and Corollaries 3.14 and 3.15 for real A 

(without any assumptions on the location of spec(A)). 
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§4. Applications to sequences of M-matrix powers 

DEFINITION 4.1. Let A E R  "n. 

(i) Then A is called a Z-matr ix if a~j <0,  i #  ], i,] = 1 .. . . .  n. 

(ii) Further, A is called an M-matrix if A is a Z-matr ix and all eigenvalues of 

A have nonnegative real part. 

In this section we mainly discuss matrices satisfying the following hypothesis. 

HYPOTHESIS 4.2. The matrix A belongs to C ~. Assume that there exist a 

subset T of C, a sequence R = (r~, r2 . . . .  ) and a positive integer p satisfying the 

following conditions: 

R is an infinite increasing T-semiforcing sequence, 

spec(A ) C T, 

A '~ is an M-matrix, k = 1,2,. . . ,  

(4.3) 

(4.4) 

(4.5) 

and 

(4.6) 

LEMMA 4.7. 

A p is an irreducible Z-matrix.  

Let the matrix A satis]:y Hypothesis 4.2. Then all eigenvalues of 

A are nonnegative. Further, i[ v is the minimal real eigenvalue of A then it is 

simple and the associated right and left eigenvectors may be chosen (entrywise ) 
positive. 

PROOF. Let A E spec(A), where A # 0. Since every nonzero eigenvalue of an 

M-matrix has a positive real part (e.g. [1, p. 150]), it follows from (4.5) that 

Re(A rk ) > 0, k = 1,2 . . . . .  It now follows from (4.3) and (4.4) that A > 0. Hence all 

eigenvalues of A are nonnegative. 

Now let v be the minimal eigenvalue of A. Observe that the minimal 

eigenvalue of A p is u p. Since (4.6) holds, v p is a simple eigenvalue and the 

associated right and left eigenvectors x and yT respectively may be chosen 

positive. Therefore  v is a simple eigenvalue of A and by standard arguments 

using the Jordan canonical form we deduce that x and yl- are the associated 

eigenvectors of A. [] 

DEFINITION 4.8. (i) Let D E C nn. Then D is called a positive diagonal matrix 

if D is a diagonal matrix and all diagonal entries of D are positive. 

(ii) Let  A, B E C nn. Then A and B are called positively diagonally similar if 

there exists a positive diagonal matrix D in C n~ such that B = D-~AD. 
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(iii) Let A , B  E C "n. Then A and B are called cogredient if there exists a 

permutation matrix P in C "n such that B = P'CAP. 

Evidently positive diagonal similarity is an equivalence relation on C "". 

We now partially generalize Theorem 9.6 of [3] in the case that the matrix A 

has a sequence of M-matrix powers. As observed in the introduction, our proof 

is independent of the proof in [3]. 

THEOREM 4.9. Let the matrix A satisfy Hypothesis 4.2. Then A is positively 
diagonally similar to a positive semidefinite matrix. 

PROOF. By Lemma 4.7 we may let X and Y be positive diagonal matrices 

such that Xe and eYY are the right and left eigenvectors of A associated with 

the nonnegative (minimal) eigenvalue v, where e = [1,1 . . . . .  1] r. Let D = 

(XY- ' )  ~/2, let B = D-~AD and let u = (XY)'J2e. Observe that u and u T are the 

right and left eigenvectors of B associated with v. Thus 

(4.10) Re(Brk)u = #nu =>0, k = 1,2 . . . . .  

Clearly, Re(B rk) is a Z-matrix.  Since u is positive, it follows from (4.10) by a 

very well known result (e.g. [8, Theorem 4]) that Re(B 'k) is an M-matrix and 

thus positive semidefinite. By Lemma 4.7 all eigenvalues of B are nonnegative. 

Furthermore,  the minimal eigenvalue of B is simple and hence the index of 0 as 

an eigenvalue of B is at most 1. By Corollary 3.9 the matrix B is positive 

semidefinite. [] 

We now prove some results that are needed in Section 5 for a generalization of 

Theorem 6.12 of [3] in the case that the matrix A has a sequence of M-matrix 

powers. 

Let A be a Hermitian matrix. As is well known, e.g. [4, p. 156], A may be 

written in the form 

(4.11) A = ) i . ,E,  + " "  + ,~qEq, 

where At . . . . .  Aq are the distinct (real) eigenvalues of A and Et . . . . .  Eq are 

mutually orthogonal idempotent Hermitian matrices whose sum is the identity 

matrix. The form (4.11) is called the spectral decomposition of A. If A further 

satisfies Hypothesis 4.2 then in view of Lemma 4.7 we may assume that 

(4.12) 0 =  < A, < " "  < A~. 

LEMMA 4.13. Let A be a Hermitian matrix that satisfies Hypothesis 4.2 and let 
the spectral decomposition of A be given by (4.11) where (4.12) holds. Then 
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E~ > O. Furthermore, if n > 1 then q > 1 and Eq is cogredient to a direct sum of m 

singular irreducible (symmetric idempotent) M-matrices, where m < n. 

P~OOF. As is well known the idempotent  Ez = xy*, where x and y* are the 

right and left eigenvectors of A associated with A~ under the normalization 

y*x = 1. By L e m m a  4.7 we have 

(4.14) E~ > 0. 

Suppose that q = 1. Then A is a scalar matrix and it follows from (4.6) that 

n = 1. Thus we have shown that n > 1 implies that q > 1. 

Suppose that n > 1. It follows easily from (4.12) that 

(4.15) lim (A/Xq) '~ = Eq. 

Hence,  by (4.5), Eq is an M-matr ix.  Since A is Hermitian,  Eq is symmetric  and 

idempotent  and therefore cogredient to a direct sum of m irreducible symmetric  

idempotent  M-matrices.  Since q > 1, we have EtUq = 0, and it follows from 

(4.14) that each direct summand in Eq is singular. Since Eq~O, it obviously 

follows that m < n. [] 

§5. Further applications to sequences of M-matrix powers 

Hencefor th  we shall use the results of Sections 4 and 5 of [3], but not the 

results of other sections of that paper.  

Let C E C  ..... and let U E C  n", where the rows and columns of U are 

parti t ioned into subsets of cardinality nl . . . . .  nm with n l + ' " +  n,, = n. In 

Definition 4.1 of [3] we introduced the inflation matrix CxxU. Thus if 

C(n, . . . . .  nm) consists of the set of matrices U E C"" parti t ioned as 

"U,~ U~_~ "-" U,m" 
. . .  

(5 .1)  u = 

Um t 

where Ui~ is n, x hi, i = 1 . . . . .  m, then 

(5.2) Cxx U = 

" ' "  

Cll U l l  C12 U I 2  " ' "  

LCmlUml cm2Um2 

Ct,,,Ul,,,. 1 
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The operation of inflation generalizes the Hadamard and Kronecker  products. 

Given a partition (n~ . . . . .  rim) of n, we introduce in Definition 4.3 of [3] a certain 

subclass ~(n~ . . . . .  n,,) of partit ioned n x n matrices of rank 1 with no zero 

entries. Thus U E C " "  belongs to a//(nl . . . . .  n,,) if and only if there exist 

u, v, ~ C"' such that u,, v, have no zero components  and 

(v,)T u, = 1, i = 1 . . . . .  m, 

U 0 = u,(v~) T, i,j = 1 . . . . .  m. 

Here we need consider only positive U. The set of positive U belonging to some 

class °//(n~ . . . . .  n,,) is here denoted by o-//,,,. If UEag, , , ,  then CxxU has 

interesting properties, see Section 4 of [3]. We require three additional simple 

lemmas. 

Let U E 0-//,,,, As in [3] we write 

(5.3) G ( U )  = L, - (l,,xx U). 

Then G ( U )  is the direct sum of m irreducible idempotents of nullity 1, see 

Section 4 of [3]. Further,  since U > 0, G ( U )  is an M-matrix,  see Section 5 of [3]. 

LEMMA 5.4. Let A E C"", C E C m". Let U be a symmetric matrix in °ll,,, and 

let ~ be a real number. I f  

(5.5) A = C x x U +  AG(U),  

where G ( U )  is given by (5.3), then A is a Hermitian matrix [real symmetric 

matrix] if and only if C is a Hermitian matrix [real symmetric matrix]. 

PROOF. We give the proof in the Hermitian case. Suppose A is Hermitian. 

By (5.3) the matrix G ( U )  is real symmetric. Thus CxxU is Hermitian and since 

U has no 0 elements it follows from (5.2) that C is Hermitian. The converse is 

equally easy. [] 

LEMMA 5.6. Let A E C"", C E C ram, U E °llm, and ~t ~ C. Suppose that (5.5) 

holds. Then 

(i) spec(C) C spec(A). 

(ii) If A is a Z-matrix then C is a Z-matrix. 

(iii) I[ A is an M-matrix then C is an M-matrix. 

(iv) If A is irreducible then C is irreducible. 

PaooF. (i) This is contained in Corollary 4.22 of [3]. 
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(ii) Since U > 0 and in view of (5.2), if C has a positive off-diagonal e lement  

then the cor responding  block of A is positive. 

(iii) Follows immedia te ly  from (i) and (ii). 

(iv) In view of (5.2), if C has a zero off-diagonal e lement  then the cor respond-  

ing block of A is zero.  [ ]  

Unde r  addit ional  hypotheses  we may obtain s t ronger  results. Proofs  are 

provided for the implications not covered  by the cor responding  parts of L e m m a  

5.6. 

LEMMA 5.7. Let  C be a Hermitian matrix in C "n. Let  U be a symmetric matrix 

in 01Iron, where m < n, and let A be a real number such that A > v, where v is the 

max ima l  eigenvalue o[ C. I[ (5.5) holds then 

(i) spec (A)  = spec(C)  LI {A}. 

(ii) A is a Z -mat r i x  i[ and  only if C is a Z-matr ix .  

(iii) A is an M-mat r i x  i[ and only if C is an M-matr ix .  

(iv) A is irreducible i[ and only if C is irreducible. 

PROOF. (i) This is again conta ined in Corol lary  4.22 of [3]. 

(ii) Let  C be a Z-mat r ix .  Since C is Hermi t ian ,  it follows from the Cauchy 

interlacing inequalit ies,  e.g. [7, p. 119], that 

(5.8) cii =< v, i = 1 . . . . .  m. 

Since v < A, we have 

(5.9) c~ < A, i = 1 . . . . .  m. 

Thus,  if A and I = In are par t i t ioned in the same way as U, it follows that  

(5.10) A,, = c,,U~, + a ( I  - U),, = AI~, - (A - c , )U, ,  i = 1 . . . . .  m. 

Since U~ > 0 it follows from (5.9) that A~ is a Z-mat r ix ,  i = 1 . . . . .  m. Fur ther ,  

since C is a Z-mat r ix ,  we have c~ < 0, i # ]. Hence ,  since U~j > 0, it follows from 

A o = c , j U  o, i #  j, i , j =  l . . . . .  m, 

that Ao<-_O, i # j ,  i , j = l  . . . . .  m. Thus  A is a Z-mat r ix .  

(iii) Follows immedia te ly  from (i) and (ii). 

(iv) If m = 1 then A = A,  and the irreducibili ty of A follows from (5.9) and 

(5.10). 

Now let m > 1 and let C be irreducible.  Since c 0 # 0  implies that c~iU~j#O, 

i #  j, i,j = 1 . . . . .  m, the irreducibili ty of A follows from the irreducibil i ty of C. [ ]  
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The following definition may be found in Definition 1.1 of [3]. 

DEFINITION 5.11. Let A E C ~". Then A is called an M M A - m a t r i x  if A '  is an 

irreducible M-matrix for t = 1,2 . . . . .  

THEOREM 5.12. Let the matrix A satisfy Hypothesis 4.2. Then A is an 

M M A  -matrix. 

PROOF. By Theorem 4.9 we may assume, without loss of generality, that A is 

a positive semidefinite matrix, since the class of M-matrices is invariant under 

positive diagonal similarity. We prove our theorem by induction on n. If n -- 1 

then the result is an immediate consequence of (4.3), (4.4) and Definition 2.1. 

Assume that the result holds if n < s, where s > 1, and let n = s. Let the spectral 

decomposition of A be given by (4.11) where (4.12) holds. Let B = A - AqE,. By 

Lemma 4.13 above and by Lemma 5.5 of [3] there exists a positive matrix 

U ~ a//,,, such that Eq = G ( U ) ,  where m is the number of irreducible direct 

summands in Eq and where G ( U )  is given by (5.3). Further,  by Lemma 4.13 

above we have m < n. Since EqB = 0 -- BEq, it follows from Lemma 4.23 in [3] 

that there is a matrix C E a//,,n, such that B = CxxU. 

We shall now show that C satisfies Hypothesis 4.2 (with n replaced by m). 

Since G ( U ) B  = 0 = B G ( U ) ,  it follows from (4.12) in [3] that 

(5.13) A '  = ( C ' x x U ) + A ' G ( U ) ,  t = 1,2 . . . . .  

By Lemma 5.6(i) and (4.4) we now have 

(5.14) spec(C) C_ spec(A ) C_ T. 

By Lemma 5.6(iii), (4.5) and (5.13) imply that 

(5.15) C "k isan M-matrix, k = 1,2 . . . . .  

By Parts (ii) and (iv) of Lemma 5.6, (4.6) and (5.13) imply that 

(5.16) C p is an irreducible Z-matrix.  

Therefore,  by (4.3) and (5.14)-(5.16), the matrix C satisfies Hypothesis 4.2. By 

the inductive assumption C is an M M A - m a t r i x  and, by Lemma 5.4, the matrix C 

is symmetric. It follows that C '  is a symmetric irreducible M-matrix, q = 1,2 . . . . .  

Hence, by (5.13) and by Lemma 5.7(iii) with C, A and A replaced respectively by 

C', A' and A ', t = 1,2 . . . . .  it follows that A is an M M A  -matrix. [] 

Of course, an M M A - m a t r i x  satisfies Hypothesis 4.2, and a matrix positively 

diagonally similar to an M M A - m a t r i x  is an M M A - m a t r i x .  Thus we may 
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combine Theorems 4.9 and 5.12 to obtain the following corollary which 
generalizes Theorem 9.6 of [3]. 

COROLLARY 5.17. Let A ~ C"". Then the following are equivalent. 

(i) A satisfies Hypothesis 4.2. 
(ii) A is positively diagonally similar to a symmetric MMA-matr ix .  

(iii) A is an MMA-matr ix .  
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